

MDBenchmark: Benchmark molecular dynamics simulations

[image: _images/mdbenchmark.svg]
 [https://pypi.python.org/pypi/mdbenchmark][image: _images/version.svg]
 [https://anaconda.org/conda-forge/mdbenchmark][image: _images/mdbenchmark1.svg]
 [https://pypi.python.org/pypi/mdbenchmark][image: _images/MDBenchmark.svg]
 [https://travis-ci.org/bio-phys/MDBenchmark][image: _images/badge.svg]
 [https://codecov.io/gh/bio-phys/MDBenchmark][image: _images/PRs-welcome-brightgreen.svg]
 [http://makeapullrequest.com][image: _images/112506401.svg]
 [https://zenodo.org/badge/latestdoi/112506401]

MDBenchmark — quickly generate, start and analyze benchmarks for your molecular dynamics simulations.

MDBenchmark is a tool to squeeze the maximum out of your limited computing
resources. It tries to make it as easy as possible to set up systems on varying
numbers of nodes and compare their performances to each other.

You can also create a plot to get a quick overview of the possible performance
(and show of to your friends)! The plot below shows the performance of an
molecular dynamics system on up to five nodes with and without GPUs.

[image: _images/runtimes.png]

Quick start

Follow the next two paragraphs to get a quick start. Extended usage guides can
be found below. You can install mdbenchmark with your favorite Python
package manager. Afterwards you are ready to use mdbenchmark.

Install

If you are familiar with the usual way of installing python packages, just use
pip:

pip install mdbenchmark

Anaconda users can install via conda:

conda install -c conda-forge mdbenchmark

Cutting-edge users may prefer pipenv:

pipenv install mdbenchmark

Usage

Now that the package is installed, you can generate benchmarks for your system.
Assuming you want to benchmark a GROMACS 2018.2 simulation on up to 5 nodes,
with the TPR file called md.tpr, run the following command:

mdbenchmark generate -n md --module gromacs/2018.2 --max-nodes 5

After generation benchmarks can be submitted:

mdbenchmark submit

Now, you can also monitor the status of your benchmark with mdbenchmark.
This will show you the performance of all runs that have finished:

mdbenchmark analyze

Plotting of the current results can be achieved with mdbenchmark analyze
--plot.

Content

	Installation
	Why isolated environments matter

	Install via conda

	Install via pip

	Install via pipenv

	Basic usage of MDBenchmark
	GROMACS

	NAMD

	Usage with multiple modules

	Generation of benchmarks
	Specifying the input file

	Choosing a MD engine for the benchmark(s)

	Skipping module name validation

	Defining the number of nodes to run on

	Listing available hosts

	Defining the job template to run from

	Running on graphics processing units (GPUs)

	Limiting the run time of benchmarks

	Submission of benchmarks
	Submitting all generated benchmarks

	Submitting specific benchmarks separately

	Force submitting jobs that were already submitted once

	Analysis of benchmarks
	Retrieving the results

	Defining a name for the CSV file

	Narrow down results to a specific benchmark

	Plotting of benchmark results

	Plot the number of cores

	Defining host templates
	Sun Grid Engine (SGE)

	Slurm

	LoadLeveler

	Options passed to job templates

Usage reference

mdbenchmark

Generate, run and analyze benchmarks of GROMACS simulations.

mdbenchmark [OPTIONS] COMMAND [ARGS]...

Options

	
--version

	Show the version and exit.

analyze

Analyze finished benchmarks.

mdbenchmark analyze [OPTIONS]

Options

	
-d, --directory <directory>

	Path in which to look for benchmarks. [default: .]

	
-p, --plot

	Generate a plot of finished benchmarks.

	
--ncores <ncores>

	Number of cores per node. If not given it will be parsed from the benchmarks log file.

	
-o, --output-name <output_name>

	Name of the output .csv file.

generate

Generate benchmarks simulations from the CLI.

mdbenchmark generate [OPTIONS]

Options

	
-n, --name <name>

	Name of input files. All files must have the same base name.

	
-g, --gpu

	Use GPUs for benchmark. [default: False]

	
-m, --module <module>

	Name of the MD engine module to use.

	
--host <host>

	Name of the job template.

	
--min-nodes <min_nodes>

	Minimal number of nodes to request. [default: 1]

	
--max-nodes <max_nodes>

	Maximal number of nodes to request. [default: 5]

	
--time <time>

	Run time for benchmark in minutes. [default: 15]

	
--list-hosts

	Show available job templates.

	
--skip-validation

	Skip the validation of module names.

submit

Submit benchmarks to queuing system.

benchmarks are searched recursively starting from the directory specified
in –directory.

Checks whether benchmark folders were already generated, exits otherwise.
Only runs benchmarks that were not already started. Can be overwritten with
–force.

mdbenchmark submit [OPTIONS]

Options

	
-d, --directory <directory>

	Path in which to look for benchmarks. [default: .]

	
-f, --force

	Resubmit all benchmarks and delete all previous results.

Indices and tables

	Search Page

	Index

Installation

Why isolated environments matter

Installing a new python package into the main python environment of your system
can lead to unforeseen consequences. Python packages can have dependencies on
different versions of the same package, i.e. numpy. If package packageA
depends on numpy==1.14.1 and you install packageB, which depends on
numpy==1.9.2, then packageA may stop to work. Isolating packages into
their own environments makes sure to provide the needed dependencies, while not
disrupting the dependencies of other packages (in other environments).

Depending on your setup, there are different ways to create an isolated
environment. In the normal Python world, one calls them virtual environment [https://docs.python.org/3/tutorial/venv.html],
while users of the Anaconda distribution know them as conda environment [https://conda.io/docs/user-guide/tasks/manage-environments.html].

We recommend to install the package inside a conda environment [https://conda.io/docs/user-guide/tasks/manage-environments.html], while the
other ways are also supported.

Install via conda

Installation for Anaconda users is handled by conda. The following commands
create an environment called benchmark and install mdbenchmark inside.

conda create -n benchmark
conda install -n benchmark -c conda-forge mdbenchmark

Before every usage of mdbenchmark, you need to first activate the conda
environment via source activate benchmark. After doing this once, you can
use mdbenchmark for the duration of your shell session.

source activate benchmark

Install via pip

Installation with pip should also be done inside a virtual environment.

python3 -m venv benchmark-env

This created a new directory called benchmark-env, if it did not exist
before. Now you can activate the environment, as described above.

source benchmark-env/bin/activate

After activating the environment, you should be able to install the package via
pip.

Note

The --user option leads to the installation of the package in your home
directory $HOME. If you are not using the option, you may get errors due
to missing write permissions.

pip install --user mdbenchmark

The method requires you to remember where you put the virtual environment and
always specify the path when activating. conda makes this easier. Several
python packages try to make up for this and provide some wrappers, like
virtualenvwrapper [https://virtualenvwrapper.readthedocs.io/en/latest/].

Install via pipenv

The easiest way is to install the package is via pipenv. First install
pipenv (refer to its documentation [https://docs.pipenv.org/install/#pragmatic-installation-of-pipenv]).

pip install --user pipenv

Now you can let pipenv take care of creating the virtual environment. The
only downside here is, that you will always need to call mdbenchmark from
the folder you installed it in.

pipenv install mdbenchmark
pipenv run mdbenchmark

You can also activate the virtual environment once and then visit different
directories afterwards:

pipenv shell
cd ..
mdbenchmark

Basic usage of MDBenchmark

Usage of MDBenchmark can be broken down into three points:

	generate

	submit

	analyze

We first generate benchmarks from an input file, e.g., .tpr in GROMACS.
Afterwards we submit all generated benchmarks to the queuing system of your HPC.
Finally, we analyze the performance of each run and generate a plot for easier
readability.

MDBenchmark currently supports two MD engines: GROMACS [http://www.gromacs.org/] and NAMD [https://www.ks.uiuc.edu/Research/namd/].
Extensions for AMBER [http://ambermd.org/] and LAMMPS [https://lammps.sandia.gov/] is planned and help is appreciated [https://github.com/bio-phys/MDBenchmark/issues/new]. In
the following, we will describe the usage of the supported MD engines.

GROMACS

Assuming your TPR file is called protein.tpr and you want to run benchmarks
with the module gromacs/2016.4-plumed2.3, run the following command:

mdbenchmark generate --name protein --module gromacs/2016.4-plumed2.3

To run benchmarks on GPUs simply add the --gpu flag:

mdbenchmark generate --name protein --module gromacs/2016.4-plumed2.3 --gpu

You can also create benchmarks for different versions of GROMACS:

mdbenchmark generate --name protein --module gromacs/2016.4-plumed2.3 --module gromacs/2018.2 --gpu

NAMD

Note

NAMD support is experimental. If you encounter any problems or bugs, we
would appreciate to hear from you [https://github.com/bio-phys/MDBenchmark/issues/new].

Generating benchmarks for NAMD follows a similar process to GROMACS. Assuming
the NAMD configuration file is called protein.namd, you will also need the
corresponding protein.pdb and protein.psf inside the same folder.

Warning

Please be aware that all paths given in the protein.namd file
must be absolute paths. This ensures that MDBenchmark does not destroy paths
when copying files around during benchmark generation.

In analogy to the GROMACS setup, you can execute the following command to
generate benchmarks for a module named namd/2.12:

mdbenchmark generate --name protein --module namd/2.12

To run benchmarks on GPUs add the --gpu flag:

mdbenchmark generate --name protein --module namd/2.12-gpu --gpu

Be aware that you will need to use different NAMD modules when generating and
running GPU and non-GPU benchmarks! To work with GPUs, NAMD needs to be compiled
separately and will be probably named differently on the host of your choice.
Using the --gpu option on non-GPU builds of NAMD may lead to poorer
performance and erroneous results.

Usage with multiple modules

You can use this feature to compare multiple versions of one MD engine or
different MD engines with each other. Note that the base name for the GROMACS
and NAMD files (see above) must to be the same, e.g., protein.tpr and
protein.namd.

mdbenchmark generate –name protein –module namd/2.12 –module gromacs/2016.4

Generation of benchmarks

We first need to generate benchmarks with MDBenchmark, before we can run and
analyze these. All options for benchmark generation are accessible via
mdbenchmark generate. The options presented in the following text can be
chained together in no particular order in one single call to mdbenchmark
generate.

Specifying the input file

MDBenchmark requires one file to generate GROMACS benchmarks and three files for
NAMD. The base name of the input file is provided via the -n or --name
option to mdbenchmark generate. The following table lists all files required
by the given MD engine.

	MD engine

	Required files

	GROMACS

	.tpr

	NAMD

	.namd, .psf, .pdb

If your input file is called protein.tpr, then the base name of the file is
protein and you need to call:

mdbenchmark generate --name protein

Choosing a MD engine for the benchmark(s)

MDBenchmark assumes that your HPC uses the modules [https://linux.die.net/man/1/module] package to manage loading
of MD engines. When given the name of a supported MD engine, it will try to find
the specified version:

mdbenchmark generate --module gromacs/2016.4-plumed2.3

It is also possible to specify two or more modules at the same time. MDBenchmark
will generate the correct number of benchmark systems for the respective MD
engines, sharing all other given options:

mdbenchmark generate --module gromacs/2016.4-plumed2.3 --module gromacs/2018.2

Also it is possible to mix and match MD engines in a single mdbenchmark
generate call, if the base name of the files is the same (see above):

mdbenchmark generate --module gromacs/2016.4-plumed2.3 --module namd/2.12

Skipping module name validation

If MDBenchmark does not manage to determine the naming of your MD engine
modules, it will warn you, but continue generating the benchmarks. Contrary, if
it manages to determine the naming, but is unable to find the specified version,
benchmark generation fails. If you are sure that the name is correct and
MDBenchmark is wrong, you can force the generation of benchmark systems with the
--skip-validation option:

mdbenchmark generate --skip-validation

Defining the number of nodes to run on

Benchmarks are especially helpful, if you want to figure out on how many nodes
you should run your MD job on. You can provide MDBenchmark with a range of nodes
to run benchmarks on. The two options defining the range are --min-nodes and
--max-nodes for the lower and upper limit of the range, respectively. If you
do not specify either of these two options, MDBenchmark will use the default
values of --min-nodes=1 and --max-nodes=5. This would generate a total
of 5 benchmarks, running each benchmark on 1, 2, 3, 4 and 5 nodes.

Listing available hosts

MDBenchmark comes with two pre-defined templates for the MPCDF clusters draco [https://www.mpcdf.mpg.de/services/computing/draco]
and hydra [https://www.mpcdf.mpg.de/services/computing/hydra]. You can easily create your own job templates, as described
here. You can list all available job templates via:

mdbenchmark generate --list-hosts

Defining the job template to run from

MDBenchmark will try to lookup the hostname of your current machine and search
for a job template with the same name. If it cannot find the correct file or you
want to use one you have written yourself, e.g., named my_job_template,
simply use the --host option:

mdbenchmark generate --host my_job_template

Running on graphics processing units (GPUs)

The default template for the MPCDF cluster draco showcases the ability to
run benchmarks on GPUs. Generation of these benchmarks is possible with the
-g or --gpu option:

mdbenchmark generate --gpu

Note

When generating benchmarks for GPUs, MDBenchmark will also generate the
equivalent benchmark for CPUs. If you only want to benchmark on GPUs, you can
either delete the CPU folder or not submit these benchmarks. This behavior
will be changed in the upcoming version 2.0, where you can choose not to
generate CPU benchmarks.

Limiting the run time of benchmarks

You want your benchmarks to run long enough for the MD engine to stop optimizing
the performance, but short enough not to waste too much computing time. We
currently default to 15 minutes per benchmark, but think that common system
sizes (less than 1 million atoms) can be benchmarked in 5-10 minutes on modern
HPCs. To change the run time per benchmark, simply use the --time option:

mdbenchmark generate --time 5

This would run all benchmarks for a total of five minutes.

Submission of benchmarks

After all benchmark systems are generated, you can also use MDBenchmark to
submit these to the queuing system on your HPC. We currently support submission
to Slurm [https://en.wikipedia.org/wiki/Slurm_Workload_Manager], SGE [https://en.wikipedia.org/wiki/Oracle_Grid_Engine] and LoadLeveler [https://en.wikipedia.org/wiki/IBM_Tivoli_Workload_Scheduler].

Submitting all generated benchmarks

To submit all generated benchmarks that are recursively found starting in the
current directory, use:

mdbenchmark submit

Note

mdbenchmark submit will currently submit all benchmarks in the current
folder and its subdirectory without confirmation. Use the --directory
option to limit this behavior.

Submitting specific benchmarks separately

If you do not want to submit all benchmark systems at once, you can submit them
separately with the --directory option. Simply define the relative path to
the given directory:

mdbenchmark submit --directory draco_gromacs/2016.4-plumed2.3

Force submitting jobs that were already submitted once

If your jobs were already submitted, but you want to resubmit them once more,
you can do so with the --force option:

mdbenchmark submit --force

Analysis of benchmarks

As soon as the benchmarks have been submitted you can request a summary of the
current performance. If a job has not yet finished, not yet started or crashed,
MDBenchmark notifies you and marks the affected benchmarks accordingly.

Retrieving the results

The benchmark results can be retrieved immediately after they have been
submitted, even if the jobs have not yet started. To do this, simply run:

mdbenchmark analyze

This will do two things for you:

	Print the current performance results for all benchmarks found recursively in the current directory.

	Save the above performance results to a .csv file.

The printed results look like this:

 module nodes ns/day run time [min] gpu host ncores
0 gromacs/2016.4-plumed2.3 1 10.878 15 False draco 32
1 gromacs/2016.4-plumed2.3 2 21.38 15 False draco 64
2 gromacs/2016.4-plumed2.3 3 34.033 15 False draco 96
3 gromacs/2016.4-plumed2.3 4 ? 15 False draco ?
4 gromacs/2016.4-plumed2.3 5 51.71 15 False draco 160

The results above showcases that MDBenchmark displays jobs that have not
finished, started or crashed with a question mark (?).

Defining a name for the CSV file

You can define the name of the output CSV file with the -o or --output-name option:

mdbenchmark analyze --output-name my_benchmark_results.csv

Narrow down results to a specific benchmark

Similar to the submission of benchmarks, you can use the --directory option
to narrow down the performance analysis to a specific path of benchmarks or a
single benchmark:

mdbenchmark analyze --directory draco_gromacs/2018.2

Plotting of benchmark results

MDBenchmark provides a quick and simple way to plot the results of the
benchmarks, giving you a .pdf file as output. To generate a plot simply use
the --plot option:

mdbenchmark analyze --plot

Warning

The plotting function currently only allows to plot CPU and GPU benchmark from
the same module, and also assumes that benchmarks were always performed with
CPUs. This behavior will be fixed in a future release. If you want to compare
different modules with each other, either use the --directory option to
generate separate plots or create your own plot from the provided CSV file.

Plot the number of cores

You can customize the top of your plot with the --ncores option. It accepts
an integer value, referring to the number of cores per node. If the option is
not given, MDBenchmark will try to read this information from the log file.

Defining host templates

You can create your own host templates in addition to the ones shipped with the
MDBenchmark. We use the jinja2 Python package for these host templates.
Please refer to the official Jinja2 documentation <http://jinja.pocoo.org/>
for further information on formatting and functionality.

To be detected automatically, a template file must have the same filename as
returned by the UNIX command hostname. If this is not the case, you can
point MDBenchmark to a specific template by providing its name via the
--host option.

Assuming you created a new host template in your home directory ~/.config/MDBenchmark/my_custom_hostfile:

mdbenchmark generate --host my_custom_hostfile

Sun Grid Engine (SGE)

This example shows a HPC running SGE with 30 CPUs per node.

#!/bin/bash
join stdout and stderr
#$ -j y
change to currend work dir
#$ -cwd
#$ -N {{ name }}
Number of nodes and MPI tasks per node:
#$ -pe impi_hydra {{ 30 * n_nodes }}
#$ -l h_rt={{ formatted_time }}

module unload gromacs
module load {{ module }}
module load impi

Run gromacs/{{ version }} for {{ time - 5 }} minutes
mpiexec -n {{ 30 * n_nodes }} -perhost 30 mdrun_mpi -v -maxh {{ time / 60 }} -deffnm {{ name }}

Slurm

The following showcases the job template for the MPCDF cluster draco using
Slurm.

#!/bin/bash -l
Standard output and error:
#SBATCH -o ./{{ name }}.out.%j
#SBATCH -e ./{{ name }}.err.%j
Initial working directory:
#SBATCH -D ./
Job Name:
#SBATCH -J {{ name }}
#
Queue (Partition):
{%- if gpu %}
#SBATCH --partition=gpu
#SBATCH --constraint='gpu'
{%- else %}
{%- if time is lessthan 30 or time is equalto 30 %}
#SBATCH --partition=express
{%- elif time is greaterthan 30 and time is lessthan 240 or time is equalto 240 %}
#SBATCH --partition=short
{%- else %}
#SBATCH --partition=general
{%- endif %}
{%- endif %}
#
Number of nodes and MPI tasks per node:
#SBATCH --nodes={{ n_nodes }}
#SBATCH --ntasks-per-node=32
Wall clock limit:
#SBATCH --time={{ formatted_time }}

module purge
module load impi
module load cuda
module load {{ module }}

Run {{ module }} for {{ time }} minutes
srun gmx_mpi mdrun -v -maxh {{ time / 60 }} -deffnm {{ name }}

LoadLeveler

Here is an example job template for the MPG cluster hydra (LoadLeveler).

@ shell=/bin/bash
#
@ error = {{ name }}.err.$(jobid)
@ output = {{ name }}.out.$(jobid)
@ job_type = parallel
@ node_usage = not_shared
@ node = {{ n_nodes }}
@ tasks_per_node = 20
{%- if gpu %}
@ requirements = (Feature=="gpu")
{%- endif %}
@ resources = ConsumableCpus(1)
@ network.MPI = sn_all,not_shared,us
@ wall_clock_limit = {{ formatted_time }}
@ queue

module purge
module load {{ module }}

run {{ module }} for {{ time }} minutes
poe gmx_mpi mdrun -deffnm {{ name }} -maxh {{ time / 60 }}

Options passed to job templates

MDBenchmark passes the following variables to each template:

	Value

	Description

	name

	Name of the TPR file

	gpu

	Boolean that is true, if GPUs are requested

	module

	Name of the module to load

	n_nodes

	Maximal number of nodes to run on

	time

	Benchmark run time in minutes

	formatted_time

	Run time for the queuing system in human readable format (HH:MM:SS)

To ensure correct termination of jobs formatted_time is 5 minutes longer
than time.

MDBenchmark will look for user templates in the xdg [https://specifications.freedesktop.org/basedir-spec/basedir-spec-latest.html] config folders defined by
the environment variables XDG_CONFIG_HOME and XDG_CONFIG_DIRS which by
default are set to $HOME/.config/MDBenchmark and /etc/xdg/MDBenchmark,
respectively. If the variable MDBENCHMARK_TEMPLATES is set, the script will
also search in that directory.

MDBenchmark will first search in XDG_CONFIG_HOME and XDG_CONFIG_DIRS for
a suitable template file. This means it is possible to overwrite system-wide
installed templates or templates shipped with the package.

Index

 Symbols
 | M

Symbols

 	
 	
 --host <host>

 	mdbenchmark-generate command line option

 	
 --list-hosts

 	mdbenchmark-generate command line option

 	
 --max-nodes <max_nodes>

 	mdbenchmark-generate command line option

 	
 --min-nodes <min_nodes>

 	mdbenchmark-generate command line option

 	
 --ncores <ncores>

 	mdbenchmark-analyze command line option

 	
 --skip-validation

 	mdbenchmark-generate command line option

 	
 --time <time>

 	mdbenchmark-generate command line option

 	
 --version

 	mdbenchmark command line option

 	
 	
 -d, --directory <directory>

 	mdbenchmark-analyze command line option

 	mdbenchmark-submit command line option

 	
 -f, --force

 	mdbenchmark-submit command line option

 	
 -g, --gpu

 	mdbenchmark-generate command line option

 	
 -m, --module <module>

 	mdbenchmark-generate command line option

 	
 -n, --name <name>

 	mdbenchmark-generate command line option

 	
 -o, --output-name <output_name>

 	mdbenchmark-analyze command line option

 	
 -p, --plot

 	mdbenchmark-analyze command line option

M

 	
 	
 mdbenchmark command line option

 	--version

 	
 mdbenchmark-analyze command line option

 	--ncores <ncores>

 	-d, --directory <directory>

 	-o, --output-name <output_name>

 	-p, --plot

 	
 mdbenchmark-generate command line option

 	--host <host>

 	--list-hosts

 	--max-nodes <max_nodes>

 	--min-nodes <min_nodes>

 	--skip-validation

 	--time <time>

 	-g, --gpu

 	-m, --module <module>

 	-n, --name <name>

 	
 	
 mdbenchmark-submit command line option

 	-d, --directory <directory>

 	-f, --force

 _static/up.png

_static/ajax-loader.gif

_images/runtimes.png
Performance [ns/day]

100
%0
a0
0
60
s0
a0
30
20
10

draco

Cores
2 64 %6 128 160

T H 3 7 H
Numer of nodes.

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

nav.xhtml

 Table of Contents

 		
 MDBenchmark: Benchmark molecular dynamics simulations

 		
 Installation

 		
 Why isolated environments matter

 		
 Install via conda

 		
 Install via pip

 		
 Install via pipenv

 		
 Basic usage of MDBenchmark

 		
 GROMACS

 		
 NAMD

 		
 Usage with multiple modules

 		
 Generation of benchmarks

 		
 Specifying the input file

 		
 Choosing a MD engine for the benchmark(s)

 		
 Skipping module name validation

 		
 Defining the number of nodes to run on

 		
 Listing available hosts

 		
 Defining the job template to run from

 		
 Running on graphics processing units (GPUs)

 		
 Limiting the run time of benchmarks

 		
 Submission of benchmarks

 		
 Submitting all generated benchmarks

 		
 Submitting specific benchmarks separately

 		
 Force submitting jobs that were already submitted once

 		
 Analysis of benchmarks

 		
 Retrieving the results

 		
 Defining a name for the CSV file

 		
 Narrow down results to a specific benchmark

 		
 Plotting of benchmark results

 		
 Plot the number of cores

 		
 Defining host templates

 		
 Sun Grid Engine (SGE)

 		
 Slurm

 		
 LoadLeveler

 		
 Options passed to job templates

_static/file.png

_static/down-pressed.png

_static/down.png

_static/runtimes.png
Performance [ns/day]

100
%0
a0
0
60
s0
a0
30
20
10

draco

Cores
2 64 %6 128 160

T H 3 7 H
Numer of nodes.

_static/minus.png

_static/plus.png

_static/up-pressed.png

